

Established by the European Commission

Slide of the Seminar

How quickly does turbulence die out ?

Dr. Gregory Bewley

ERC Advanced Grant (N. 339032) "NewTURB" (P.I. Prof. Luca Biferale)

Università degli Studi di Roma Tor Vergata C.F. n. 80213750583 – Partita IVA n. 02133971008 - Via della Ricerca Scientifica, I – 00133 ROMA

How quickly does turbulence die out?

Gregory P. Bewley Michael Sinhuber Eberhard Bodenschatz

Max Planck Institute for Dynamics and Self-Organization Göttingen, Germany

http://en.wikipedia.org/wiki/File:Flow_separation.jpg

$$y \qquad u_x(\mathbf{x}, t_0) = U_0 \sin\left(\frac{y}{\lambda_y}\right)$$
$$\partial_t \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u} = -\nabla P + \nu \nabla^2 \mathbf{u}$$
$$\partial_t u_x = -\frac{\nu}{\lambda_y^2} u_x$$
$$u_x = U_0 \frac{e^{-\nu t/\lambda_y^2}}{e^{-\nu t/\lambda_y^2}} \sin\left(\frac{y}{\lambda_y}\right)$$

Observation:

Von Kármán and Howarth, Kolmogorov, Dryden, Batchelor, Saffman, etc...

http://ict-aeolus.eu/images/horns_rev.jpg

effect of Reynolds number on:1. Decay of turbulence2. Scaling in turbulence

1. $r,t \Rightarrow r/L(t)$

2.
$$Re = const$$

 $K \sim t^{-1}$

tU/M

Dryden (1941) *Q. Appl. Maths* Speziale and Bernard (1992) *J. Fluid Mech.*

Bewley et al. (2007) Phys. Fluids

RATE OF DECAY

RATE OF DECAY

$$f(r,t) = \frac{\langle u(\vec{x},t) u(\vec{x}+\vec{r},t) \rangle}{u'^2}$$

$$f(r,t)\sim r^{-2}$$
 \Leftrightarrow $K\sim t^{-6/5}$ (Saffman) $f(r,t)\sim r^{-6}$ \Leftrightarrow $K\sim t^{-10/7}$ (Kolmogorov)

e.g. Davidson (2011) Phys. Fluids

$Re_M = \frac{UM}{\nu}$

\mathcal{X}

http://fdrc.iit.edu/research/images/GridTurbulenceRe2.jpg

GRID TURBULENCE

Kurian and Fransson (2009) Fluid Dyn. Res.

Kurian and Fransson (2009) Fluid Dyn. Res.

THE VARIABLE DENSITY TURBULENCE TUNNEL (VDTT)

Bewley, Nobach, Sinhuber, Xu, Bodenschatz (2014) under review.

LOOKING UPSTREAM

TO DETERMINE THE DECAY RATE IN AN EXPERIMENT:

$$u^2 = A(t - t_0)^{-n}$$

e.g. Mohammed and LaRue (1990) J. Fluid Mech.

$$u^2 = A(t - t_0)^{-n}$$

IDEA:
$$u_i^2 \sim (u_0^2)^{n_i/n_0}$$

Eliminates dependence on t_0

Valid if variation in virtual origin with Reynolds number is small.

SCALING

$$\delta v = v(x + r, t) - v(x, t)$$
$$S_n(r) = \langle \delta v^n \rangle$$

$$\frac{3}{r^3} \int_0^r \frac{\partial}{\partial t} S_2(s,t) \, ds + S_3 = -\frac{4}{5} \epsilon r + 6\nu \frac{\partial S_2}{\partial r}$$

$$\epsilon = \nu \left\langle \frac{\delta u_i}{\delta x_j} \frac{\delta u_i}{\delta x_j} \right\rangle$$

for *locally* isotropic turbulence and sufficiently high Reynolds number:

$$\frac{3}{r^3} \int_0^r \frac{\partial}{\partial t} S_2(s,t) \, ds + S_3 = -\frac{4}{5} \epsilon r + 6\nu \frac{\partial S_2}{\partial r}$$

Kolmogorov (1941) Dokl. Akad. Nauk. SSSR...

by extension
$$S_n = C_n (\epsilon r)^{n/3}$$

when $\epsilon(\vec{x},t) = \langle \epsilon \rangle$

Margit Vallikivi Marcus Hultmark Lex Smits

Princeton University

THE NSTAP

30 – 60 micron

HOT WIRE PROBES

Vallikivi et al. (2011) Expt. Fluids

$$let \qquad S_3 = Cr^{\zeta_3} \implies \frac{d\log S_3}{d\log r} = \zeta_3$$

scaling would appear as a range of constant logarithmic slope

$$let \qquad S_3 = Cr^{\zeta_3} \implies \frac{d\log S_3}{d\log r} = \zeta_3$$

When do we first get a range of constant slope?

Qian (1999) *Phys. Rev. E* Lundgren (2002) *Phys. Fluids*

EXTENDED SELF-SIMILARITY

Benzi et al. (1993) PRE

Pearson and Antonia (2001) JFM

	VDTT	BL	DNS	S-L	K41
ζ_2	0.6915 ± 0.0006	0.708	0.699	0.695	0.666
ζ_4	1.284 ± 0.001	1.26	1.279	1.280	1.333
ζ_6	1.779 ± 0.009	1.71	1.772	1.778	2.000

- BL: Sreenivasan and Dhruva (1996) *Prog. Theo. Supp.*
- DNS: Cao, Chen and She (1996) PRL
- S-L: She and Lévêque (1994) PRL
- K41: Kolmogorov (1941) Dokl. Akad. Nauk. SSSR...

$$f(r,t) = \frac{\langle u(\vec{x},t) u(\vec{x}+\vec{r},t) \rangle}{u'^2}$$

e.g. Davidson (2011) Phys. Fluids

Is it possible to imprint desired long-range correlations?

CONTROL OF LARGE-SCALE STRUCTURE

-for high Reynolds numbers

e.g. Makita (1991) Fluid. Dyn. Res.

-for control

e.g. Poorte and Biesheuvel (2002) *JFM* Cekli, Tipton and van de Water (2010) *PRL*

Thank you:

E. Bodenschatz	Soccer balls I&II		
<i>Active grid</i>	K. Chang		
E. Cekli	EW. Saw		
F. Köhler	PY. Lim		
J. Kassel	G. Good		
F. Lachaussée	D. Ivanov		
H. Grajewski	H. Nobach		
<i>Wind tunnel</i>	T. Schneider		
M. Sinhuber	J. Vollmer		
H. Eckelmann	H. Xu		
<i>Funding</i> Max Planck Gesellschaft Volkswagen Stiftung	A. Kopp A. Kubitzek O. Kurre A. Renner U. Schminke <i>et al.</i>		